Приложение к основной образовательной программе среднего общего образования муниципального общеобразовательного автономного учреждения «Средняя общеобразовательная школа №88», утвержденной приказом № 01-12/524 от 30.08.2023 г.

Оценочный материал к предметам среднего общего образования

Паспорт фонда оценочных материалов

Класс 10

№ п/ п	Контролируемые разделы (темы) предмета*	Наименование оценочного средства	
1	Контрольная работа	Входная контрольная работа	
2	Законы механики	Контрольная работа № 1	
3	Законы сохранения в механике	Контрольная работа № 2	
4	Молекулярная физика. Основы термодинамики	Контрольная работа № 3	
5	Контрольная работа	Промежуточная аттестация. Итоговая	
		контрольная работа	

Входная контрольная работа

правильный ответ – 1 балл;

отсутствие ответа или неправильный ответ – 0 баллов

Критерии оценивания:

- 0-3 баллов оценка 2
- 4-5 баллов оценка 3
- 6-7 баллов оценка 4
- 8 баллов опенка 5

- № 1. Какая физическая величина вычисляется по формуле s / t?
 - А. Скорость. Б. Пройденный путь. В. Время Г. Ускорение. Д. Масса.
- № 2. Зависимость координаты движения материальной точки от времени при прямолинейном равномерном движении выражается формулой:
 - A. $x = x_0 + v_x t$ B. $y = y_0 + v_y t$ B. $y = x_0 v_x t$ Γ . $x = y_0$
- № 3. Чему равно изменение импульса тела, если на него подействовала сила 15 Н в течении 5 секунд?
 - A. 3 kg m/c. δ. 5 kg m/c. B. 15 kg m/c. Γ.75 kg m/c.
- № 4. Автомобиль массой 0.5 т, движущийся со скоростью 72 км/ч, обладает кинетической энергией, равной...
 - А. 100 Дж. Б. 10 Дж. В. 100 кДж. Г. 1 МДж.
- № 5. Вагон массой 4,5 т, движущийся со скоростью 8 м/с, сталкивается с покоящимся вагоном массой 1,5 т. Скорость вагонов после автосцепки равна:
 - A. 2 m/c. Б. 4 m/c. B. 3 m/c. Γ. 6 m/c.
- № 6 Определите ускорение автомобиля, если его масса 2,9 т, сила тяги 650 кН, а коэффициент

трения равен 0, 007.

№ 7. При буксировке автомобиля буксирный трос жесткостью 106 Н/м удлинился на 2 см. Чему равна сила упругости, с которой трос действует на автомобиль?

№ 8. В последнюю секунду свободного падения тело прошло пятую часть своего пути. С какой высоты упало тело?

Вариант 2

№ 1. Какая физическая величина вычисляется по формуле v·t

А. Скорость . Б. Пройденный путь. В. Время Г. Ускорение.

№ 2. Зависимость скорости равноускоренного движения материальной точки от времени выражается формулой:

A. $V=v_0$ B. $V=v_0+at$ B. V=at Γ . $V=v_0-at$

№ 3. Чему равен импульс тела массой 2 кг, движущегося со скоростью 3 м/с?

А. 1,5 кг • м/с. Б. 6 кг • м/с. В. 9 кг • м/с. Г. 18 кг • м/с.

№ 4. Тело массой 5 кг, находящееся на высоте 40 м обладает потенциальной энергией...

А. 200 Дж. Б. 2 Дж. В. 2 кДж. Г. 20 кДж.

№ 5. Тележка массой 2 кг, движущаяся со скоростью 3 м/с, сталкивается с неподвижной тележкой массой 4 кг и сцепляется с ней. Чему равна скорость обеих тележек после взаимодействия? А. 0,5 м/с. Б. 1 м/с. В. 1,5 м/с. Г. 3 м/с.

№ 6. Ускорение автомобиля равно 1,5м/с2, а его масса 3,5 т, сила тяги 750 кН. Определите коэффициент трения.

№ 7. При столкновении двух вагонов буферные пружины жесткостью 105 H/м сжались на 10 см. Чему равна максимальная сила упругости, с которой пружины воздействовали на вагон?

№ 8. Тело свободно падает с высоты 122,5 м. Определить путь, пройденный телом за последнюю секунду падения.

Контрольная работа №1 по теме «Законы механики»

правильный ответ – 1 балл;

отсутствие ответа или неправильный ответ $-\,0\,$ баллов

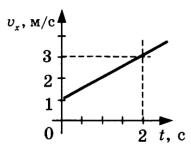
Критерии оценивания:

0-5 баллов – оценка 2

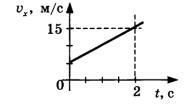
6-8 баллов – оценка 3

9-10 баллов – оценка 4

11-12 баллов – оценка 5

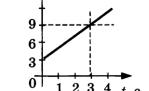

1 вариант

- 1. На парте лежит учебник. Относительно каких тел эта книга покоится? Относительно каких движется?
- 2. Турист обошел круглое озеро, радиус которого 150 м. ему равен путь, пройденный туриста?
- 3. Тело движется вдоль оси ОХ. Проекция его скорости $v_x(t)$ меняется по закону, приведенному на графике. Определите путь, пройденный v_x , м/с телом за 2 с.

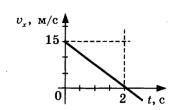

10

- 4. Пассажир идет со скоростью 2 м/с относительно вагона поезда по направлению его движения. Скорость поезда относительно земли равна 54 км/ч. С какой скоростью движется человек относительно земли?
- 5. За какое время автомобиль, двигаясь с ускорением $0,4~\text{m/c}^2$, увеличивает свою скорость с 36~км/ч до 72~км/ч?

- 6. Длина дорожки для взлета самолета 450 м. Какова скорость самолета при взлете, если он движется равноускоренно и взлетает через 10 с после старта?
- 7. Тело начинает двигаться из начала координат вдоль оси OX, причем проекция скорости v_x меняется с течением времени по закону, приведенному на графике. Определите ускорение тела.



- 8. Мяч падает с высоты 80 м. сколько времен длилось падение мяча?
- 9. Определите линейную скорость колеса, диаметр которого 40 см, а период вращения 2 с.
- 10. Каково центростремительное ускорение поезда, движущегося по закруглению радиусом 500 м со скоростью 90 км/ч?
- 11. Снаряд, вылетевший из орудия под углом к горизонту, находился в поете 8 с. Какой наибольшей высоты достиг снаряд?
- 12. Тело массой 400 г двигается вдоль оси ОХ, причем проекция скорости v_x меняется с течением времени по закону, приведенному на графике. Определите значение силы, действующей на тело.


2 вариант

- 1. Во время контрольной работы все десятиклассники сосредоточенно решают задачи. Приведите примеры тел, относительно которых старшеклассники двигаются.
- 2. Какую траекторию движения имеет Луна?
- 3. Поезд длиной 560 м, двигаясь равномерно, прошел мост длиной 640 м за 2 мин. Определите скорость поезда.
- 4. При движении моторной лодки по течению реки ее скорость относительно берега 10 м/с, а при движении против течения 6 м/с. Определите скорость течения реки.
- 5. Сколько времени длится разгон автомобиля, если он увеличил свою скорость от 15 м/с до 30 м/c, двигаясь с ускорением 0.5 м/c^2 ?
- 6. При аварийном торможении автомобиль, имеющий начальную скорость 108 км/ч, движется с ускорением 5 м/c^2 . Определите тормозной путь автомобиля.
- 7. По графику зависимости модуля скорости от времени, представленному на рисунке, определите ускорение прямолинейно движущегося тела в момент времени 2 с.

 v_r , m/c

- 8. С какой высоты был сброшен камень, если он упал на землю через 3 с?
- 9. Найдите угловую скорость барабана лебедки диаметром 16 см при подъеме груза со скоростью 0,4 м/с.
- 10. Колеса автомобиля, радиус которого 40 см, имеет угловую скорость 3 рад/с. Определите центростремительное ускорение колеса.
- 11. Камень, брошенный под углом к горизонту, достиг набольшей высоты 20 м. Найдите время подъема камня.
- 12. Тело массой 200 г начинает тормозить, причем проекция скорости v_x меняется с течением времени по закону, приведенному на графике. Определите значение тормозящей силы.

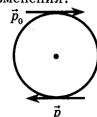
Контрольная работа № 2 по теме «Законы сохранения в механике».

правильный ответ – 1 балл;

отсутствие ответа или неправильный ответ – 0 баллов

Критерии оценивания:

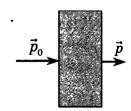
0-3 баллов – оценка 2


4-5 баллов – оценка 3

6-7 баллов – оценка 4

8 баллов – оценка 5

ВАРИАНТ № 1


- 1. Определите импульс автомобиля массой 2 т, который движется со скоростью 90 км/ч.
- 2. Грузовик массой 3 т ехал со скоростью 60 км/ч. После загрузки его масса увеличилась на 1 т. С какой скоростью должен возвращаться грузовик, чтобы его импульс остался без изменения?
- 3. Материальная точка движется по окружности с постоянной по модулю скоростью. На рисунке указан начальный и конечный импульс точки. Постройте вектор изменения импульса.

- 4. Неподвижная лодка вместе с находящимся в ней охотником имеет массу 250 кг. Охотник выстреливает из охотничьего ружья в горизонтальном направлении. Какую скорость получит лодка после выстрела? Масса пули 8 г, а ее скорость при вылете равна 700 м/с.
- 5. С помощью динамометра, расположенного под углом 30° к горизонтальной поверхности, равномерно перемещают брусок массой 100 г на расстояние, равное 20 см. Определите работу равнодействующей всех сил.
- 6. Каждый из четырех двигателей самолета Ан-124 («Руслан») развивает силу тяги 230 кН при скорости 810 км/ч. Какова общая мощность двигателей?
- 7. Земля движется вокруг Солнца со скоростью 30 км/с. Определите кинетическую энергию Земли (масса Земли $5 \cdot 10^{24}$ кг).
- 8. Яблоко, висящее на дереве, на высоте 3 м обладает потенциальной энергией 4,5 Дж. Определите массу яблока.

- 1. Камень массой 200 г свободно падает в ущелье. Каким будет импульс камня через 3 с полета? Силой сопротивления воздуха пренебречь.
- 2. Грузовик массой 3 т ехал со скоростью 72 км/ч. После загрузки его масса увеличилась на 1 т. Во сколько раз изменится импульс грузовика, если он будет возвращаться со скоростью 60 км/ч?

3. На рисунке указан начальный и конечный импульс пули, пробившей доску. Постройте вектор изменения импульса пули.

- 4. С лодки массой 200 кг, движущейся со скоростью 1 м/с, ныряет мальчик массой 50 кг, двигаясь в горизонтальном направлении. Какой станет скорость лодки после прыжка мальчика, если он прыгает с носа в направлении движения лодки со скоростью 2 м/с?
- 5. Мальчик везет своего друга на санках по горизонтальной дороге, прикладывая силу 60 Н. Веревка санок составляет с горизонталью угол 30°. За некоторое время мальчик совершил механическую работу равную 6000 Дж. Чему равно пройденное расстояние?
- 6. Автомобиль, имеющий массу 800 кг, трогается с места и, двигаясь равноускоренно, проходит путь 20 м за время 2 с. Найдите мощность, которую развивает автомобиль в конце пути.
- 7. Футбольный мяч обладает кинетической энергией 20 Дж, когда летит со скоростью 36 км/ч. Определите массу мяча.
- 8. На какой высоте сидит голубь, если он обладает потенциальной энергией 70,4 Дж? Масса птицы 400 г.

Контрольная работа № 3 по теме «Молекулярная физика. Основы термодинамики»

правильный ответ -1 балл;

отсутствие ответа или неправильный ответ – 0 баллов

Критерии оценивания:

0-2 баллов – оценка 2

3 балла – оценка 3

4 балла – оценка 4

5 баллов – оценка 5

ВАРИАНТ №1.

- **1**.При изобарном расширении газа на 0.5 м^3 ему было передано 0.3 МДж теплоты. Вычислите изменение внутренней энергии газа, если его давление равно $200 * 10^3 \text{Па}$.
- **2**. Внутренняя энергия водорода , находящегося при температуре 400K, составляет 900KДж. Какова масса этого газа?
- **3.**КПД теплового двигателя равен 45%. Какую температуру имеет холодильник ,если температура нагревателя равна 227 °C.
- **4**. Аэростат объемом 600м³ наполнен гелием под давлением $150 \cdot 10^3$ Па. В результате солнечного нагрева температура в аэростате поднялась от 10 °C до 25°C. Насколько увеличилась внутренняя энергия газа?
- **5.**Тепловая машина имеет максимальное КПД 50 % . Определите температуру холодильника ,если температура нагревателя 820 К.

ВАРИАНТ №2.

- **1.** Газ, находящийся под давлением $50\cdot~10^3$ Па , изобарно расширился на 20 л. Каково изменение его внутренней энергии, если он получил $60\cdot10^{-3}$ Дж теплоты? Как изменилась температура газа?
- **2.** Какую внутреннюю энергию имеет 1 моль гелия при температуре 127° С.
- **3.**Вычислите температуру нагревателя идеальной паровой машины с КПД, равным 60.8 %, если температура холодильника равна 30 °C.
- **4**.Определите работу расширение 20 л газа при изобарном нагревании от 400К до 493 К. Давление газа 100 к Π а.
- **5.** При изотермическом расширении газ совершил работу , равную 20 Дж. Какое количество теплоты сообщено газу?

Промежуточная аттестация. Итоговая контрольная работа

правильный ответ – 1 балл;

отсутствие ответа или неправильный ответ – 0 баллов

Критерии оценивания:

Критерии оценивания:

0-10 баллов – оценка 2

11- 14 баллов – оценка 3

15-17 баллов – оценка 4

18-21 баллов – опенка 5

- 1. Какое из четырех понятий обозначает физическое явление?
- 1) молекула 2) сила 3) весы 4) кипение
- 2. Тело, брошенное вертикально вверх, достигло наибольшей высоты 10 м и упало на землю. Путь, пройденный телом, равен
- 1) 20m 2) I0m 3) 5m 4) 0m
- 3. Плот равномерно плывет по реке со скоростью б км/ч. Человек движется поперек плота со скоростью 8 км/ч. Чему равна скорость человека в системе отсчета, связанной с берегом?
- 1) 2 км/ч 2) 7 км/ч 3) 10 км/ч 4) 14 км/ч
- 4. Скорость тела при прямолинейном равноускоренном движении увеличилось в 3 раза за 3 с и стала равной 9 м/с. Ускорение тела равно
- 1) $I \text{ m/c}^2$ 2) 2 m/c² 3) 3m/c² 4) 1,5 m/c²
- 5. В трубке, из которой откачан воздух, с одной и той же высоты одновременно сбрасываются дробинка, пробка и птичье перо. Какое из этих тел быстрее достигнет дна трубки?
- 1) дробинка 2) пробка 3) птичье перо 4) все три тела достигнут дна трубки одновременно
- 6. Земля совершает оборот вокруг своей оси за
- 1) 1 час 2) 1 сутки 3) 1 месяц 4) 1 год
- 7. На тело массой m со стороны Земли, масса которой M, действует сила mg. На Землю со стороны этого тела действует *сила*, равная
- 1) 0 2) mg 3)Mg 4) mg
- 8. Под действием одинаковой силы две пружины растянулись: первая на 4 см, вторая на 10 см. Жесткость первой пружины по отношению к жесткости второй пружины
- 1) больше в 2,5 раза 2) меньше в 2,5 раза
- 3) больше на б см 4) меньше на б см
- 9. Тело вблизи поверхности Земли находится в состоянии невесомости, если оно движется c ускорением, равным ускорению свободного падения и направленным
- 1) вертикально вниз 2) вертикально вверх
- 3) горизонтально 4) под острым углом к горизонту
- 10. Тело массой m кладут на наклонную плоскость с углом наклона α. Коэффициент трения равен μ. Сила трения, действующая на тело, равна μ m g Cos α. Тело

- 1) покоится 2) движется под действием горизонтальной силы
- 3) скользит 4) скользит или покоится в зависимости от массы тела
- 11. Летевший горизонтально со скоростью υ пластилиновый шарик массой т ударяется о вертикальную стену и прилипает к ней. Время удара τ. Чему равен модуль средней силы, действующей на стенку во время удара?
- 1) $m \upsilon / \tau$ 2) 0 3) $m \upsilon / \tau$ 4) 2 $m \upsilon / \tau$
- 12. При выстреле из пистолета вылетает пуля массой m со скоростью v. Какой по модулю импульс приобретает сразу после выстрела пистолет, если его масса в 100 раз больше массы пули?
- 1) 0 2) m v /100 3) m v 4) 100 m v
- 13. Камень массой 0.3 кг, брошенный вертикально вверх с некоторой начальной скоростью, достигнув высоты 3 м, упал обратно. Работа силы тяжести за все время полета (принять g = 10 м/с²) равна
- 1) 0 Дж 2) 0,9 Дж 3) 9 Дж 4) 18 Дж
- 14. В любой замкнутой системе тел сохраняется
- 1) полная механическая энергия системы 2) суммарная потенциальная энергия системы
- 3) скорость каждого тела 4) импульс системы
- 15. Если массу груза уменьшить в 4 раза, то период колебаний гру- за на пружине
- 1) увеличится в 4 раза 2) увеличится в 2 раза
- 3) уменьшится в 2 раза 4) уменьшится в 4 раза
- 16. Если длина математического маятника уменьшится 4 раза, то период его колебаний
- 1) увеличится в 2 раза 2) уменьшится в 2 раза
- 3) увеличится в 4 раза 4) уменьшится в 4 раза
- 17. За какую часть периода шарик математического маятника проходит путь от среднего положения до крайнего?
- 1) 1/8 2) 1/4 3)1/2 4) 1
- 18. Взаимодействие между молекулами носит характер
- 1) притяжения 2) отталкивания 3) притяжения на малых расстояниях, отталкивания на больших
- 4) отталкивания на малых расстояниях, притяжения -на больших
- 19. Трем телам равной массы с удельными теплоемкостями с, 2с и 3с сообщили одинаковое количество теплоты. Какое из этих тел нагреется до более высокой температуры?
- 1) первое 2) второе 3) третье 4) температуры всех тел будут одинаковы
- 20. Какая из приведённых формул описывает состояние идеального газа?
- A. PV = m/M * RT
- $\mathbf{F}. \quad \mathbf{P}_1 \mathbf{V}_1 / \mathbf{T}_1 = \mathbf{P}_2 \mathbf{V}_2 / \mathbf{T}_2$
- 1) обе формулы 2) только А 3) только Б 4) ни одна из формул
- 21. Какому процессу в идеальном газе соответствует график на рисунке?

P

→ T

1) изохорному 2) изобарному 3) изотермическому 4) адиабатному

- 1, Какое из четырех понятий обозначает физическую величину?
- 1) Луна 2) железо 3) масса 4) испарение
- 2. Тело, брошенное вертикально вверх, достигло наибольшей высоты 10 м и упало на землю. Модуль перемещения при этом равен
- 1) 20 m 2) I0 m 3) 6 m 4) 0 m
- 3. Вертолет равномерно поднимается вертикально вверх. Какова траектория движения точки на конце лопасти винта вертолета в системе отсчета, связанной с корпусом вертолета?
- точка
 прямая
- 3) окружность 4) винтовая линия
- 4. По графику зависимости модуля скорости от времени, представленному на рисунке, определите ускорение прямолинейно движущегося тела в мо-

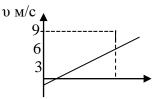


рис. 2

- 1) $2 \text{ m/c}^2 2$) $3 \text{ m/c}^2 3$) $9 \text{ m/c}^2 4$) 27 m/c^2
- 5. При свободном падении тела его скорость (принять $g = 10 \text{ м/c}^2$)
- 1) за первую секунду увеличивается на 5 м/с, за вторую—на 10 м/с;
- 2) за первую секунду увеличивается на 10 м/с, за вторую на 5 м/с;
- 3) за первую секунду увеличивается на 10 м/с, за вторую—на 10 м/с;
- 4) за первую секунду увеличивается на 10 м/с, за вторую на 40 м/с;
- 6. Земля совершает оборот вокруг Солнца за
- 1) 1 час 2) 1 сутки Э) 1 месяц 4) 1 год
- 7. На рисунке 1 представлены направления векторов скорости υ и ускорения а мяча. Какое направлений имеет вектор равнодействующей F всех из представленных на рисунке 2 сил, приложенных к мячу?
- 1) 1 2) 2 3) 3 4) 4
- 8. На рисунке приведен график зависимости модуля силы упругости от удлинения пружины. Чему равна жесткость пружины?
- 1) 1 H/m
- 2) 4 H/M
- 3) 9 H/M
- 4) 100 H/m
- 9. На тело, находящееся внутри искусственного спутника Земли,
- 1) действует сила притяжения к Земле
- 2) действует сила реакции опоры

3) действует сила Архимеда

4) не действуют никакие силы

F.H

10. На наклонной плоскости с углом а к горизонту покоится брусок массой т. Чему равен модуль силы трения, действующей на брусок? (Коэффициент трения скольжения µ)

Рис. 1

30

20

10

- 1) μ m g
- 2) μ m g cos α
- 3) m g sin α
- 4) m g cos α
- 11. Материальная точка массой m равномерно движется по окружности радиуса R со скоростью v. Чему равен модуль изменения импульса за половину периода?
- 1) 0 2) m v 3) 2 m v 4) 2 m v/R
- 12. Снаряд, летящий горизонтально со скоростью 200 м/с, разрывается на два одинаковых осколка, один из которых летит назад со скоростью 200 м/с. С какой скоростью летит второй осколок?
- 1) 200 m/c 2) 400 m/c 3) 600 m/c 4) 800 m/c
- 13. Работа каких ниже перечисленных сил:
- а. силы тяготения б. силы упругости в. силы трения зависит от формы пути?
- 1) только а 2) только 6 3) только в 4) а, б и в
- 14. Закон сохранения импульса выполняется только
- 1) во внешнем поле силы
- 2) в замкнутой системе тел
- 3) в неинерциальной системе отсчета
- 4) при отсутствии силы трения
- 15. Если жесткость пружины уменьшить в 4 раза, то период колебаний маятника
- 1) увеличится в 2 раза
- 2) уменьшится в 2 раза
- 3) увеличится в 4 раза 4) уменьшится в 4 раза
- 16. Если длина математического маятника увеличится в 4 раза, то частота его колебаний
- 1) увеличится в 2 раза
- 2) уменьшится в 2 раза
- 3) увеличится в 4 раза
- 4) уменьшится в 4 раза
- 17. За какую часть периода шарик математического маятника проходит путь от левого крайнего положения до правого крайнего положения?
- 4) 1 1) 1/8 $2)\frac{1}{4}$ $3) \frac{1}{2}$
- 18. Груз на нити совершает свободные колебания между точками 1 и 3. В каком положении груза равнодействующая сила равна нулю?

- 1) в точке 2 2) в точках 1 и 3
- 3) в точках 1, 2, 3 4) ни в одной точке
- 19. Какое явление наиболее убедительно доказывает, что молекулы вещества находятся на некотором расстоянии друг от друга?
- 1) испарение жидкости 2) расширение тела при нагревании
- 3) диффузия 4) броуновское движение
- 20. Три твердых тела равной массы с одинаковыми начальными температурами и удельными теплоемкостями с, 2с и 3с получают одинаковое количество теплоты в единицу времени. Какое из тел быстрее нагреется до заданной температуры?
- 1) первое
- 2) второе
- 3) третье
- 4) нагреваются одинаково
- 21. Какая из приведенных ниже формул справедлива только для идеального газа?
- 1) p = nkT 2)
- 2) $v = N/N_A$
- 3) v = m/M
- 4) $M = m_0 N_A$

Класс 11

№ п/ п	Контролируемые разделы (темы) предмета*	Наименование оценочного средства	
1	Контрольная работа	Входная контрольная работа	
2	Электродинамика	Контрольная работа № 1	
3	Электромагнитные волны	Контрольная работа № 2	
4	Основы специальной теории относительности	Контрольная работа № 3	
5	Контрольная работа	Промежуточная аттестация. Итоговая контрольная работа	

Формы и средства контроля.

Основными методами проверки знаний и умений учащихся по физике являются устный опрос, письменные и лабораторные работы. К письменным формам контроля относятся: физические диктанты, самостоятельные и контрольные работы, тесты.

Формы организации образовательного процесса:

индивидуальная, парная, групповая, интерактивная.

Методы обучения:

По источнику знаний: словесные, наглядные, практические;

По уровню познавательной активности: проблемный, частично-поисковый, объяснительно-иллюстративный;

По принципу расчленения или соединения знаний: аналитический, синтетический, сравнительный, обобщающий, классификационный.

Технологии обучения

Данная рабочая программа может быть реализована при использовании традиционной технологии обучения, а также элементов других современных образовательных технологий, передовых форм и методов обучения, таких как проблемный метод, развивающее обучение, компьютерные технологии, технология коллективной творческой деятельности (подготовка семинарских занятий), технология проектов (подготовка индивидуальных творческих работ), тестовый контроль знаний и др.

Материально-техническое обеспечение:

Таблицы общего назначения

Международная система единиц (СИ).

Приставки для образования десятичных кратных и дольных единиц.

Физические постоянные.

Шкала электромагнитных волн.

Правила по технике безопасности при работе в кабинете физики.

Стенд « Готовимся к экзаменам»

Электронные тематические таблицы

Оборудование и приборы.

Номенклатура учебного оборудования по физике определяется стандартами физического образования, минимумом содержания учебного материала, базисной программой общего образования. Лабораторное и демонстрационное оборудование указано в Перечне учебного оборудования по физике для общеобразовательных учреждений РФ.

Для постановки демонстраций достаточно одного экземпляра оборудования, для фронтальных лабораторных работ не менее одного комплекта оборудования на двоих учащихся.

Технические средства обучения:

- Персональный компьютер с программным обеспечением
- Проекционный экран
- Мультимедиапроектор
- Звуковые колонки

ОЦЕНКА ДОСТИЖЕНИЯ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ПО ФИЗИКЕ

Критерии и нормы оценки знаний, умений и навыков обучающихся по физике Оценка устных ответов учащихся.

Оценка 5 ставится в том случае, если учащийся показывает верное понимание физической сущности рассматриваемых явлений и закономерностей, законов и теорий, дает точное определение и истолкование основных понятий и законов, теорий, а также правильное определение физических величин, их единиц и способов измерения; правильно выполняет чертежи, схемы и графики; строит ответ по собственному плану, сопровождает рассказ новыми примерами, умеет применять знания в новой ситуации при выполнении практических заданий; может устанавливать связь между изучаемым и ранее изученным материалом по курсу физики, а также с материалом усвоенным при изучении других предметов.

Оценка 4 ставится в том случае, если ответ ученика удовлетворяет основным требованиям к ответу на оценку 5, но без использования собственного плана, новых примеров, без применения знаний в новой ситуации, без использования связей с ранее изученным материалом, усвоенным при изучении других предметов; если учащийся допустил одну ошибку или не более двух недочетов и может исправить их самостоятельно или с небольшой помощью учителя.

Оценка 3 ставится в том случае, если учащийся правильно понимает физическую сущность рассматриваемых явлений и закономерностей, но в ответе имеются отдельные пробелы в усвоении вопросов курса физики; не препятствует дальнейшему усвоению программного материала, умеет применять полученные знания при решении простых задач с использованием готовых формул, но затрудняется при решении задач, требующих преобразования некоторых формул; допустил не более одной грубой и одной негрубой ошибки, не более двух-трех негрубых недочетов.

Оценка 2 ставится в том случае, если учащийся не овладел основными знаниями в соответствии с требованиями и допустил больше ошибок и недочетов, чем необходимо для оценки 3.

Оценка 1 ставится в том случае, если ученик не может ответить ни на один из поставленных вопросов.

Оценка письменных контрольных работ.

Оценка 5 ставится за работу, выполненную полностью без ошибок и недочетов.

Оценка 4 ставится за работу, выполненную полностью, но при наличии не более одной ошибки и одного недочета, не более трех недочетов.

Оценка 3 ставится за работу, выполненную на 2/3 всей работы правильно или при допущении не более одной грубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и трех недочетов, при наличии четырех-пяти недочетов.

Оценка 2 ставится за работу, в которой число ошибок и недочетов превысило норму для оценки 3 или правильно выполнено менее 2/3 работы.

Оценка 1 ставится за работу, невыполненную совсем или выполненную с грубыми ошибками в заданиях.

Оценка лабораторных работ.

Оценка 5 ставится в том случае, если учащийся выполнил работу в полном объеме с соблюдением необходимой последовательности проведения опытов и измерений; самостоятельно и рационально монтирует необходимое оборудование; все опыты проводит в условиях и режимах, обеспечивающих получение правильных результатов и выводов; соблюдает требования правил безопасного труда; в отчете правильно и аккуратно выполняет все записи, таблицы, рисунки, чертежи, графики, вычисления, правильно выполняет анализ погрешностей.

Оценка 4 ставится в том случае, если учащийся выполнил работу в соответствии с требованиями к оценке 5, но допустил два-три недочета, не более одной негрубой ошибки и одного недочета. Оценка 3 ставится в том случае, если учащийся выполнил работу не полностью, но объем выполненной части таков, что позволяет получить правильные результаты и выводы, если в ходе проведения опыта и измерений были допущены ошибки.

Оценка 2 ставится в том случае, если учащийся выполнил работу не полностью и объем выполненной работы не позволяет сделать правильные выводы, вычисления; наблюдения проводились неправильно.

Оценка 1 ставится в том случае, если учащийся совсем не выполнил работу.

Во всех случаях оценка снижается, если учащийся не соблюдал требований правил безопасного труда.

Перечень ошибок. І. Грубые ошибки.

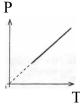
- 1. Незнание определений основных понятий, законов, правил, положений теории, формул, общепринятых символов, обозначения физических величин, единицу измерения.
- 2. Неумение выделять в ответе главное.
- 3. Неумение применять знания для решения задач и объяснения физических явлений; неправильно сформулированные вопросы, задания или неверные объяснения хода их решения, незнание приемов решения задач, аналогичных ранее решенным в классе; ошибки, показывающие неправильное понимание условия задачи или неправильное истолкование решения.
- 4. Неумение читать и строить графики и принципиальные схемы
- 5. Неумение подготовить к работе установку или лабораторное оборудование, провести опыт, необходимые расчеты или использовать полученные данные для выводов.
- 6. Небрежное отношение к лабораторному оборудованию и измерительным приборам.
- 7. Неумение определить показания измерительного прибора.
- 8. Нарушение требований правил безопасного труда при выполнении эксперимента.

П. Негрубые ошибки.

- 1. Неточности формулировок, определений, законов, теорий, вызванных неполнотой ответа основных признаков определяемого понятия. Ошибки, вызванные несоблюдением условий проведения опыта или измерений.
- 2. Ошибки в условных обозначениях на принципиальных схемах, неточности чертежей, графиков, схем.
- 3. Пропуск или неточное написание наименований единиц физических величин.
- 4. Нерациональный выбор хода решения.

III. Недочеты.

- 1. Нерациональные записи при вычислениях, нерациональные приемы вычислений, преобразований и решения задач.
- 2. Арифметические ошибки в вычислениях, если эти ошибки грубо не искажают реальность полученного результата.
- 3. Отдельные погрешности в формулировке вопроса или ответа.
- 4. Небрежное выполнение записей, чертежей, схем, графиков.
- 5. Орфографические и пунктуационные ошибки

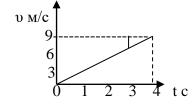

Формы и средства контроля.

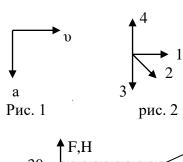
Основными методами проверки знаний и умений учащихся по физике являются устный опрос, письменные и лабораторные работы. К письменным формам контроля относятся: физические диктанты, самостоятельные и контрольные работы, тесты.

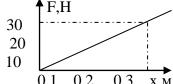
Входная контрольная работа

- 1. Какое из четырех понятий обозначает физическое явление?
- 1) молекула 2) сила 3) весы 4) кипение
- 2. Тело, брошенное вертикально вверх, достигло наибольшей высоты 10 м и упало на землю. Путь, пройденный телом, равен
- 1) 20m 2) I0m 3) 5m 4) 0m
- 3. Плот равномерно плывет по реке со скоростью б км/ч. Человек движется поперек плота со скоростью 8 км/ч. Чему равна скорость человека в системе отсчета, связанной с берегом?
- 1) 2 km/q 2) 7 km/q 3) 10 km/q 4) 14 km/q
- 4. Скорость тела при прямолинейном равноускоренном движении увеличилось в 3 раза за 3 с и стала равной 9 м/с. Ускорение тела равно
- 1) $I \text{ m/c}^2$ 2) 2 m/c² 3) 3m/c² 4) 1,5 m/c²
- 5. В трубке, из которой откачан воздух, с одной и той же высоты одновременно сбрасываются дробинка, пробка и птичье перо. Какое из этих тел быстрее достигнет дна трубки?
- 1) дробинка 2) пробка 3) птичье перо 4) все три тела достигнут дна трубки одновременно
- 6. Земля совершает оборот вокруг своей оси за
- 1) 1 час 2) 1 сутки 3) 1 месяц 4) 1 год
- 7. На тело массой m со стороны Земли, масса которой M, действует сила mg. На Землю со стороны этого тела действует *сила*, равная
- 1) 0 2) mg 3)Mg 4) mg
- 8. Под действием одинаковой силы две пружины растянулись: первая на 4 см, вторая на 10 см. Жесткость первой пружины по отношению к жесткости второй пружины
- 1) больше в 2,5 раза 2) меньше в 2,5 раза
- 3) больше на б см 4) меньше на б см
- 9. Тело вблизи поверхности Земли находится в состоянии невесомости, если оно движется c ускорением, равным ускорению свободного падения и направленным
- 1) вертикально вниз 2) вертикально вверх
- 3) горизонтально 4) под острым углом к горизонту
- 10. Тело массой m кладут на наклонную плоскость с углом наклона α. Коэффициент трения равен
- и. Сила трения, действующая на тело, равна μ m g Cos α. Тело
- 1) покоится 2) движется под действием горизонтальной силы
- 3) скользит 4) скользит или покоится в зависимости от массы тела
- 11. Летевший горизонтально со скоростью υ пластилиновый шарик массой т ударяется о вертикальную стену и прилипает к ней. Время удара τ. Чему равен модуль средней силы, действующей на стенку во время удара?
- 1) $m \upsilon / \tau$ 2) 0 3) $m \upsilon / \tau$ 4) 2 $m \upsilon / \tau$
- 12. При выстреле из пистолета вылетает пуля массой m со скоростью v. Какой по модулю импульс приобретает сразу после выстрела пистолет, если его масса в 100 раз больше массы пули?
- 1) 0 2) m v / 100 3) m v 4) 100 m v
- 13. Камень массой 0,3 кг, брошенный вертикально вверх с некоторой начальной скоростью, достигнув высоты 3 м, упал обратно. Работа силы тяжести за все время полета (принять $g = 10 \text{ м/c}^2$) равна
- 1) 0 Дж 2) 0,9 Дж 3) 9 Дж 4) 18 Дж
- 14. В любой замкнутой системе тел сохраняется
- 1) полная механическая энергия системы 2) суммарная потенциальная энергия системы
- 3) скорость каждого тела 4) импульс системы
- 15. Если массу груза уменьшить в 4 раза, то период колебаний гру- за на пружине
- 1) увеличится в 4 раза 2) увеличится в 2 раза
- 3) уменьшится в 2 раза 4) уменьшится в 4 раза
- 16. Если длина математического маятника уменьшится 4 раза, то период его колебаний
- 1) увеличится в 2 раза 2) уменьшится в 2 раза
- 3) увеличится в 4 раза 4) уменьшится в 4 раза
- 17. За какую часть периода шарик математического маятника проходит путь от среднего положения до крайнего?

- 1) 1/8 2) 1/4 3)1/2 4) 1
- 18. Взаимодействие между молекулами носит характер
- 1) притяжения 2) отталкивания 3) притяжения на малых расстояниях, отталкивания на больших
- 4) отталкивания на малых расстояниях, притяжения -на больших
- 19. Трем телам равной массы с удельными теплоемкостями с, 2с и 3с сообщили одинаковое количество теплоты. Какое из этих тел нагреется до более высокой температуры?
- 1) первое 2) второе 3) третье 4) температуры всех тел будут одинаковы
- 20. Какая из приведённых формул описывает состояние идеального газа?
- A. PV = m/M * RT
- Б. $P_1V_1/T_1 = P_2V_2/T_2$
- 1) обе формулы
- только А
- 3) только Б 4) ни одна из формул
- 21. Какому процессу в идеальном газе соответствует график на рисунке?


- 1) изохорному
- 2) изобарному 3) изотермическому 4) адиабатному


Вариант 2


- 1, Какое из четырех понятий обозначает физическую величину?
- 1) Луна 2) железо 3) масса 4) испарение
- 2. Тело, брошенное вертикально вверх, достигло наибольшей высоты 10 м и упало на землю. Модуль перемещения при этом равен
- 1) 20 m 2) I0 m 3) 6 m 4) 0 m
- 3. Вертолет равномерно поднимается вертикально вверх. Какова траектория движения точки на конце лопасти винта вертолета в системе отсчета, связанной с корпусом вертолета?
- 1) точка 2) прямая
- 3) окружность 4) винтовая линия
- 4. По графику зависимости модуля скорости от времени, представленному на рисунке, определите ускорение прямолинейно движущегося тела в мо-

мент времени 2 с.

- 1) $2 \text{ m/c}^2 2$) $3 \text{ m/c}^2 3$) $9 \text{ m/c}^2 4$) 27 m/c^2
- 5. При свободном падении тела его скорость (принять $g = 10 \text{ м/c}^2$)
- 1) за первую секунду увеличивается на 5 м/с, за вторую—на 10 м/с;
- 2) за первую секунду увеличивается на 10 м/с, за вторую на 5 м/с;
- 3) за первую секунду увеличивается на 10 м/c, за вторую—на 10 м/c;
- 4) за первую секунду увеличивается на 10 м/с, за вторую на 40 м/с;
- 6. Земля совершает оборот вокруг Солнца за
- 1) 1 час 2) 1 сутки Э) 1 месяц 4) 1 год
- 7. На рисунке 1 представлены направления векторов скорости υ и ускорения а мяча. Какое направлений имеет вектор равнодействующей F всех из представленных на рисунке 2 сил, приложенных к мячу?
- 1) 1 2) 2 3) 3 4) 4
- 8. На рисунке приведен график зависимости модуля силы упругости от удлинения пружины. Чему равна жесткость пружины?
- 1) 1 H/m 2) 4 H/M
- 3) 9 H/M4) 100 H/M

9. На тело, находящееся внутри искусственного	о спутника Земли,
1) действует сила притяжения к Земле	2) действует сила реакции опоры
3) действует сила Архимеда	4) не действуют никакие силы
	нту покоится брусок массой т. Чему равен модуль
силы трения, действующей на брусок? (Коэффи	ициент трения скольжения μ)
1) μ m g 2) μ m g cos α	
3) m g sin α 4) m g cos α	
11. Материальная точка массой т равномерно д	цвижется по окружности радиуса R со скоростью v.
Чему равен модуль изменения импульса за поло	овину периода?
1) 0 2) m ν 3) 2 m ν 4) 2 m ν/R	
12. Снаряд, летящий горизонтально со скорости	ью 200 м/с, разрывается на два одинаковых осколка,
один из которых летит назад со скоростью 200	м/с. С какой скоростью летит второй осколок?
1) 200 m/c 2) 400 m/c 3) 600 m/c 4) 800 m/c	
13. Работа каких ниже перечисленных сил:	
а. силы тяготения б. силы упругости в. силы т	рения
зависит от формы пути?	
1) только а 2) только 6 3) только в 4) а, б и в	
14. Закон сохранения импульса выполняется то	лько
1) во внешнем поле силы	
2) в замкнутой системе тел	
3) в неинерциальной системе отсчета	
4) при отсутствии силы трения	
15. Если жесткость пружины уменьшить в 4 раз	за, то период колебаний маятника
1) увеличится в 2 раза 2) уменьшится в 2 раза	
3) увеличится в 4 раза 4) уменьшится в 4 раза	
16. Если длина математического маятника увел	
1) увеличится в 2 раза 2) уменьшится в 2 раза	<u> </u>
3) увеличится в 4 раза 4) уменьшится в 4 раза	ı
17. За какую часть периода шарик математичес	кого маятника проходит путь от левого крайнего
положения до правого крайнего положения?	. ,
1) 1/8 2) ½ 3) ½ 4) 1	
18. Груз на нити совершает свободные колебан	ия между точками 1 и 3. В каком положении груза
равнодействующая сила равна нулю?	
1) в точке 2 2) в точках 1 и 3	
3) в точках 1, 2, 3 4) ни в одной точке	
19. Какое явление наиболее убедительно доказы	ывает, что молекулы вещества находятся на
некотором расстоянии друг от друга?	•
1) испарение жидкости 2) расширение тела пр	ои нагревании
3) диффузия 4) броуновское движе	ние
20. Три твердых тела равной массы с одинаков	ыми начальными температурами и удельными
теплоемкостями с, 2с и 3с получают одинаково	е количество теплоты в единицу времени. Какое из
тел быстрее нагреется до заданной температуры	4 ?
1) первое 2) второе	
3) третье 4) нагреваются одинаково	
21. Какая из приведенных ниже формул справе,	длива только для идеального газа?
1) $p = nkT$ 2) $v = N/N_A$ 3) $v = m/M$ 4) M	$= m_0 N_A$
правильный ответ – 1 балл;	
отсутствие ответа или неправильный ответ -0	баллов
Критерии оценивания:	
0-10 баллов – оценка 2	
11- 14 баллов – оценка 3	
15-17 баллов – оценка 4	
18-21 баллов – оценка 5	**.

Контрольная работа №1 по теме «Электродинамика»

правильный ответ – 1 балл;

отсутствие ответа или неправильный ответ – 0 баллов

Критерии оценивания:

0-2 баллов – оценка 2

3 балла – оценка 3

4 балла — оценка 4 5 баллов — оценка 5

Вариант №1

- 1. Проводник с током 5 А находится в магнитном поле с индукцией 10Тл. Определить длину проводника, если магнитное поле действует на него с силой 20 Н и перпендикулярно длине активной части проводника.
- 2. Какой начальный магнитный поток пронизывал контур, если при его равномерном убывании до нуля в течение 0,2 с в катушке индуцируется ЭДС 0,02 В перпендикулярно проводнику.
- 3.В катушке, индуктивность которой равна 0,4 Гн, возникла ЭДС самоиндукции, равная 20 В. Рассчитайте изменение силы тока, если это произошло за 0,2 с
- 4. В катушке, состоящей из 75 витков, магнитный поток равен 10Вб. За какое время должен исчезнуть этот поток, чтобы в катушке возникла средняя ЭДС индукции 0,74 В?
- 5.В однородное магнитное поле перпендикулярно силовым линиям влетает протон со скоростью 450 м/с, радиус кривизны траектории равен 6см. Определить индукцию магнитного .поля

Вариант №2

- 1.Участок проводника длиной 10 см находится в однородном магнитном поле с индукцией 50 мТл. Сила тока, протекающего по проводнику, 10 А. Какую работу совершает сила Ампера при перемещении проводника на 8 см в направлении действия силы. Проводник расположен перпендикулярно линиям магнитного поля
- 2. Самолет летит со скоростью 1800 км/ч, модуль вертикальной составляющей вектора индукции магнитного поля Земли 4 10-5 Тл. Какова ЭДС индукции между концами крыльев самолета, если размах крыльев равен 25 м?
- .3. Какова ЭДС индукции, возбуждаемая в проводнике, помещенном в магнитное поле с индукцией 200мТл, если оно полностью исчезает за 0,05с? Площадь, ограниченная контуром, равна 1м2.
- 4. Определите индуктивность катушки, если при равномерном увеличении тока в ней на 2,2 A за 5,0·10–2 с появляется средняя ЭДС самоиндукции, равная 1,1B.
- 5.В однородное магнитное поле с индукцией 10мТл перпендикулярно силовым линиям влетает электрон со скоростью 108 м/с .Каков радиус траектории электрона?

Контрольная работа № 2 по теме «Электромагнитные волны.»

правильный ответ – 5 баллов;

отсутствие ответа или неправильный ответ – 0 баллов

Критерии оценивания:

0-4 баллов – оценка 2

5-8 баллов – оценка 3

9-12 баллов – оценка 4

13-15 баллов – оценка 5

Вариант №1

1. Перемещая перед генератором электромагнитных волн металлический лист, получили стоячую волну. Расстояние между центрами двух смежных пучностей равно / = 15 см. Определить частоту у генератора.

- 2. Радиолокатор работает на волне $\lambda = 15$ см и дает n = 4000 импульсов в секунду. Длительность каждого импульса $\tau = 2$ мкс. Сколько колебаний N содержится в каждом импульсе и какова наибольшая глубина L разведки локатора?
- 3. Радиопередатчик работает на частоте 6 МГц. Сколько волн укладывается на расстоянии 100 км по направлению распространения радиосигнала?

Вариант №2

- 1. Перемещая перед генератором электромагнитных воли металлический лист, получили стоячую волну. Расстояние между центрами двух смежных узлов равно / = 1,5 см. Определить частоту ν генератора.
- 2. Радиолокатор работает на волне λ , = 10 см и дает n = 5000 импульсов в секунду. Длительность каждого импульса $\tau = 1$ мкс. Сколько колебаний N содержится в каждом импульсе и какова минимальная дальность L обнаружения цели?
- 3.Определить длину λ электромагнитной волны в воздухе, излучаемую передатчиком, работающим на частоте $\nu = 75~\text{M}\Gamma\text{ц}$.

Контрольная работа № 3 по теме «Основы специальной теории относительности»

правильный ответ – 1 баллов;

отсутствие ответа или неправильный ответ $-\,0$ баллов

Критерии оценивания:

0-3 баллов – оценка 2

4 балла – оценка 3

5 баллов – оценка 4

6 баллов – оценка 5

Вариант №1

- 1. Тело (космический корабль) движется со скоростью 0,95 с. При этом его продольные размеры...
- а) увеличиваются
- б) уменьшаются
- с) не изменяются
- 2. Время жизни заряженных частиц, покоящихся относительно ускорителя, равно τ . Чему равно время жизни частиц, которые движутся в ускорителе со скоростью 0,6 с?
- (1) τ 2) 1,67 τ 3) 0,8 τ 4) 1,25 τ
- 3. Проводится расчет
- А) энергии элементарной частицы, летящей с околосветовой скоростью
- Б) мощности ядерного реактора В) мощности реактивного двигателя

Использование понятий или формул СТО требуется только

- 1) в случае А 2) в случае Б 3) в случае В 4) в случае А и Б
- 4. Частица, испущенная из космического корабля движется со скоростью v1. относительно корабля. Скорость космического корабля v. Чему равна скорость частицы v2 относительно Земли? v и v1 близки к скорости света.

a)
$$v_2 = v_1 + v$$

6) $v_2 = \sqrt{v_1^2 + v^2}$

c) $v_2 = \frac{v_1 + v}{1 + \frac{v_1 v}{c^2}}$
g) $v_2 = \frac{v_1 + v}{1 - \frac{v_1 v}{c^2}}$

- 5. Сколько времени свет идет от Земли до Плутона? Расстояние от Земли до Плутона 5,9 млрд. км. Ответ округлите до целых
- a) 20 d
- б) 2000 с
- c) 2*104 c
- д) 2*105 c
- 6. Чему равна масса тела, движущегося со скоростью 0,8 с. Масса покоящегося тела 6 кг.
- а) 10 кг
- б) 6 кг
- с) 4,8 кг
- д) 3,6 кг

Вариант №2

- 1. Какой материальный объект может двигаться со скоростью, большей скорости света с?
- 1) Субсветовой электрон относительно другого субсветового электрона, движущегося навстречу первому
- 2) Протон в ускорителе относительно ускорителя
- 3) электромагнитная волна относительно движущегося источника света
- 4) ни один из материальных объектов

- 2. Луч лазера в неподвижной ракете попадает в приемник, расположенный в точке
- о. В какую точку 1 или 2 надо поместить приемник в ракете, движущейся с постоянной скоростью вправо, чтобы луч лазера попал в него?
- 1) 1, независимо от скорости ракеты
- 2) 0, независимо от скорости ракеты
- 3) 2, независимо от скорости ракеты
- 4) 0 или 1, в зависимости от скорости ракеты
- 3. Два электрона движутся в противоположные стороны со скоростями 0,5 с и 0,6 с относительно Земли. Скорость второго электрона в системе отсчета, связанной с первым электроном, равна
- 1) 1,1 c 2) c 3) 0,85 c 4) 0,1 c
- 4. Во сколько раз увеличивается время жизни нестабильной частицы, если она движется со скоростью 0,99 с?
- 1) 5 2) 5,5 3) 7,1 4) 9,2
- 5. Сколько времени свет идет от Земли до Меркурия? Расстояние от Земли до Меркурия 58 млн км.
- a) 0,02 c
- б) 100 с
- c) 200 c
- д) 1000 c
- 6. Космический корабль движется со скоростью 0,5 с относительно Земли. Из космического корабля испускается световой сигнал в направлении движения корабля. Чему равна скорость светового сигнала относительно Земли?
- a) 0,5 c
- б) с
- c) 1,5 c
- д) c *√ 1,5

Промежуточная аттестация. Итоговая контрольная работа

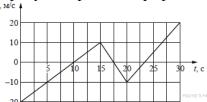
правильный ответ – 1 баллов;

отсутствие ответа или неправильный ответ – 0 баллов

Критерии оценивания:

14-15 баллов - «5»:

11-13 баллов- «4»;


8-10 баллов - «3»;

7 баллов и менее - «2».

Вариант 1

Задание 1

На рисунке приведён график зависимости проекции скорости тела v_x от времени.

Определите проекцию ускорения этого тела a_x в интервале времени от 15 до 20 с. Ответ выразите в м/c^2 .

Задание 2

На гладкой горизонтальной поверхности лежат два бруска, соединённые лёгкой пружиной. К бруску массой m=2 кг прикладывают постоянную силу, равную по модулю F=10 Н и направленную горизонтально вдоль оси пружины (см. рисунок). Определите модуль силы упругости пружины в момент, когда этот брусок движется с ускорением 1 м/c^2 .

Задание 3

Гидроакустик, находящийся на корабле, переговаривается по рации с матросом, находящимся на лодке. Во время разговора матрос наносит удар гаечным ключом по корпусу своей лодки. Звук от этого удара гидроакустик сначала слышит через рацию, а через 10 секунд — через свою гидроакустическую аппаратуру. Считая, что второй звук распространяется в воде со скоростью 1500 м/с, найдите расстояние между кораблём и лодкой. Ответ приведите в километрах.

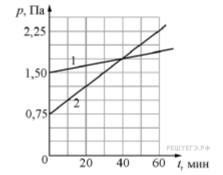
Задание 4

Установите соответствие между описанием приборов и их названиями: к каждому элементу первого столбца подберите соответствующий элемент из второго и внесите в строку ответов выбранные пифры под соответствующими буквами.

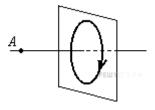
выоранные цифры под соответствующими буквами.			
ОПИСАНИЕ ПРИБОРОВ	НАЗВАНИЕ ПРИБОРОВ		
А) Прибор, измеряющий мгновенную	1) гигрометр		
скорость тела	2) спидометр		
Б) Прибор, измеряющий силу,	3) динамометр		
действующую на тела	4) измерительная линейка		
В) Прибор, измеряющий ускорение	5) акселерометр		
Г) Прибор, измеряющий атмосферное	6) барометр-анероид		
давление			

Задание 5

Температура холодильника тепловой машины 400 K, температура нагревателя на 200 K больше, чем у холодильника. Каков максимально возможный КПД машины? (Ответ дайте в процентах, округлив до целых.)


Задание 6

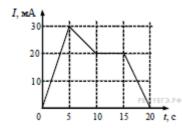
Относительная влажность воздуха в сосуде, закрытом поршнем, равна 30 %. Какова будет относительная влажность, если перемещением поршня объём сосуда при неизменной температуре уменьшить в 3 раза? (Ответ дать в процентах.)


Задание 7

В двух закрытых сосудах одинакового объёма (1 литр) нагревают два различных газа — 1 и 2. На рисунке показаны зависимости давления p этих газов от времени t. Известно, что начальные температуры газов были одинаковы.

Выберите два верных утверждения, соответствующие результатам этих экспериментов.

- 1) Количество вещества первого газа меньше, чем количество вещества второго газа.
- 2) Так как по условию эксперимента газы имеют одинаковые объёмы, а в момент времени t = 40 мин они имеют и одинаковые давления, то температуры этих газов в этот момент времени также одинаковы.
- 3) В момент времени t = 40 мин температура газа 1 больше температуры газа 2.
- 4) В процессе проводимого эксперимента внутренняя энергия обоих газов увеличивается.
- 5) В процессе проводимого эксперимента оба газа не совершают работу.

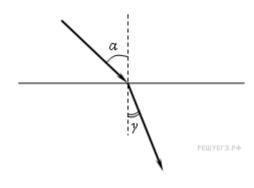


Задание 8

На рисунке изображен проволочный виток, по которому течет электрический ток в направлении, указанном стрелкой. Виток расположен в вертикальной плоскости. Точка A находится на горизонтальной прямой, проходящей через центр витка перпендикулярно его плоскости. Как направлен вектор индукции магнитного поля тока в точке A?

- 1) вертикально вверх
- 2) вертикально вниз

- 3) горизонтально вправо
- 4) горизонтально влево



Задание 9

На рисунке приведён график зависимости силы тока от времени в электрической цепи, индуктивность которой 1 м Γ н. Определите модуль ЭДС самоиндукции в интервале времени от 15 до 20 с. Ответ выразите в мкВ.

Задание 10

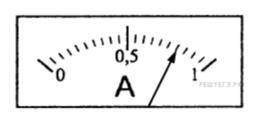
Световой пучок переходит из воздуха в стекло (см. рисунок).

Что происходит при этом с частотой электромагнитных колебаний в световой волне, скоростью их распространения, длиной волны?

Для каждой величины определите соответствующий характер изменения:

1) увеличивается; 2) уменьшается; 3) не изменяется. Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Частота	Скорость	Длина волны


Задание 11

В результате нескольких α - и β -распадов ядро урана $^{234}_{92}U$ превращается в ядро свинца $^{207}_{82}Pb$. Определите количество α -распадов и количество β -распадов в этой реакции.

Количество α-распадов	Количество β -распадов

Залание 12

Запишите результат измерения тока, учитывая, что погрешность равна цене деления. Цены деления амперметра указаны в амперах. В ответе запишите значение и погрешность слитно без пробела.

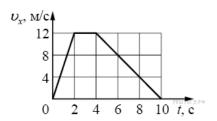
Задание 13

На рисунке приведено схематическое изображение солнечной системы. Планеты на этом рисунке обозначены цифрами. Выберите из приведенных ниже утверждений ∂sa верных, и укажите их номера.

- 1) Планета 5 состоит, в основном, из твердых веществ.
- 2) Температура на планете 4 колеблется от 70 °C до 0 °C.
- 3) Планета 2 не имеет спутников.
- 4) Плотность планеты 7 близка к плотности Земли.
- 5) Планета 6 не имеет атмосферы.

Задание 14

Точечное тело брошено под углом 45° к горизонту со скоростью 20 м/с. Пренебрегая сопротивлением воздуха, определите модуль скорости этого тела через 0,47 с после броска. Ответ выразите в м/с округлите до целого числа.


Задание 15

Пучок электронов падает перпендикулярно дифракционной решётке с периодом 14,4 мкм. В результате на фотопластинке, расположенной за решёткой параллельно ей, фиксируется дифракционная картина. Угол к направлению падения пучка, под которым наблюдается первый главный дифракционный максимум, равен 30°. Чему равна скорость электронов в пучке? Ответ выразите в м/с и округлите до десятков.

Вариант 2

Задание 1

На рисунке показан график зависимости от времени для проекции скорости тела. Какова проекция ускорения этого тела в интервале времени от 4 до 8 с?

Задание 2

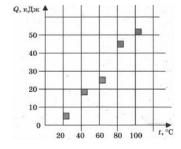
Брусок массой 5 кг покоится на шероховатом горизонтальном столе. Коэффициент трения между поверхностью бруска и поверхностью стола равен 0,2. На этот брусок действуют горизонтально направленной силой 2,5 Н. Чему равна по модулю возникающая при этом сила трения?

Задание 3

На расстоянии 510 м от наблюдателя рабочие вбивают сваи с помощью копра. Какое время пройдёт от момента, когда наблюдатель увидит удар копра, до момента, когда он услышит звук удара? Скорость звука в воздухе равна 340 м/с. Ответ выразите в с.

Задание 4

Установите соответствие между физическими величинами и приборами для их измерения. К каждой позиции первого столбца подберите нужную позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами.


ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ	ПРИБОРЫ	
А) Частота колебаний маятника	1) Динамометр	
Б) Амплитуда колебаний маятника	2) Секундомер	
	3) Амперметр	
	4) Линейка	

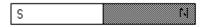
Задание 5

Газ в некотором процессе отдал количество теплоты 35 Дж, а внутренняя энергия газа в этом процессе увеличилась на 10 Дж. Какую работу совершили над газом внешние силы? (Ответ дать в джоулях.)

Задание 6

Твёрдое тело остывает. На рисунке представлен график зависимости температуры тела от отданного им количества теплоты. Удельная теплоёмкость тела 500~Дж/(кг \cdot К). Чему равна масса тела? (Ответ дать в килограммах.)

Залание 7


На графике представлены результаты измерения количества теплоты Q, затраченного на нагревание 1 кг некоторого вещества, при различных значениях температуры t этого вещества. Погрешность измерения количества теплоты $\Delta Q = \pm 500~\mathrm{Дж}$, температуры $\Delta t = \pm 2~\mathrm{K}$

Выбери два утверждения, соответствующие результатам этих измерений.

- 1) Удельная теплоёмкость вещества примерно равна 600 Дж/(кг·К)
- 2) Для нагревания до 363 К необходимо сообщить больше 50 кДж.
- 3) При охлаждении 1 кг вещества на 20 К выделится 12000 Дж.
- 4) Для нагревания 2 кг вещества на 30 К необходимо сообщить примерно 80 кДж.
- 5) Удельная теплоёмкость зависит от температуры.

Задание 8

К магнитной стрелке (северный полюс затемнен, см. рисунок), которая может поворачиваться вокруг вертикальной оси, перпендикулярной плоскости чертежа, поднесли постоянный полосовой магнит.

При этом стрелка

- 1) повернется на 180°
- 2) повернется на 90° по часовой стрелке
- 3) повернется на 90° против часовой стрелки
- 4) останется в прежнем положении

Задание 9

По проволочной катушке протекает постоянный электрический ток силой 2 А. При этом поток вектора магнитной индукции через контур, ограниченный витками катушки, равен 4 мВб. Чему будет равен поток вектора магнитной индукции через этот контур (в мВб), если по катушке будет протекать постоянный электрический ток силой 0,5 А?

Задание 10

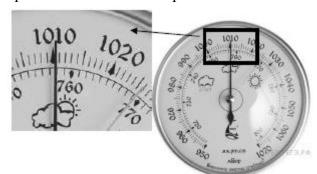
Луч света падает на границу раздела «стекло — воздух». Как изменятся при увеличении показателя преломления стекла следующие три величины: длина волны света в стекле, угол преломления, угол полного внутреннего отражения?

Для каждой величины определите соответствующий характер изменения:

1) увеличится; 2) уменьшится; 3) не изменится.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Длина волны света в стекле	Угол полного внутреннего отражения	


Задание 11

Определите число протонов и нейтронов в атомном ядре неизвестного элемента X, участвующего в ядерной реакции. В ответе запишите число протонов и число нейтронов слитно без знаков препинания между ними.

$$^{238}_{92}U + ^{A}_{Z}X \rightarrow ^{246}_{99}Es + 6^{1}_{0}n.$$

Задание 12

С помощью барометра проводились измерения атмосферного давления. Верхняя шкала барометра проградуирована в гПа, а

нижняя шкала — в мм рт. ст. Погрешность измерений давления равна цене деления шкалы барометра. Запишите в ответ величину атмосферного давления, выраженного в мм рт. ст., с учётом погрешности измерений. В ответе запишите значение и погрешность слитно без пробела.

Задание 13 Рассмотрите таблицу, содержащую сведения о ярких звёздах.

Наименование звезды	Температура поверхности, К	Масса (в массах Солнца)	Радиус (в радиусах Солнца)	Плотность по отношению к плотности воды
Альдебаран	3600	5,0	45	7,7 · 10 ⁻⁵
ε Возничего В	11 000	10,2	3,5	0,33
Капелла	5200	3,3	23	4 · 10-4
Ригель	11 200	40	138	2 · 10-5
Сириус А	9250	2,1	2,0	0,36
Сириус В	8200	1	2 - 10 ⁻²	1,75 · 10 ⁶
Солнце	6000	1,0	1,0	1,4
α Центавра А	5730	1,02	1,2	0,80

Выберите два утверждения, которые соответствуют характеристикам звёзд.

- 1) Звезда Сириус А относится к звёздам главной последовательности на диаграмме Герцшпрунга Рессела.
- 2) Звезда Ригель относится к сверхгигантам.
- 3) Наше Солнце имеет максимальную массу для звёзд главной последовательности на диаграмме Герцшпрунга Рессела.
- 4) Звезда Сириус В относится к звёздам главной последовательности на диаграмме Герцшпрунга Рессела.
- 5) Звезда Центавра А относится к белым карликам.

Задание 14

Камень бросили вертикально вверх с начальной скоростью 20 м/с. Через какое минимальное время после броска кинетическая энергия камня уменьшится в 4 раза?

Задание 15

Поток фотонов выбивает из металла фотоэлектроны, максимальная кинетическая энергия которых 10 эВ. Энергия фотонов в 3 раза больше работы выхода фотоэлектронов. Какова энергия фотонов? Ответ приведите в эВ.